Multithreading with Vulkan
Introduction
In this chapter, we’ll explore how to leverage multithreading with Vulkan to improve performance in your applications. Modern CPUs have multiple cores, and efficiently utilizing these cores can significantly enhance your application’s performance, especially for computationally intensive tasks. Vulkan’s explicit design makes it well-suited for multithreaded architectures, allowing for fine-grained control over synchronization and resource access.
Overview
Vulkan was designed with multithreading in mind, offering several advantages over older APIs:
-
Thread-safe command buffer recording: Multiple threads can record commands to different command buffers simultaneously.
-
Explicit synchronization: Vulkan requires explicit synchronization, giving you precise control over resource access across threads.
-
Queue-based architecture: Different operations can be submitted to different queues, potentially executing in parallel.
However, multithreading in Vulkan requires careful consideration of:
-
Resource sharing: Ensuring safe access to shared resources across threads.
-
Synchronization: Properly synchronizing operations between threads.
-
Work distribution: Effectively distributing work to maximize parallelism.
In this chapter, we’ll implement a multithreaded rendering system that builds upon our previous work with compute shaders. We’ll create a particle system where:
-
One thread handles window events and presentation
-
Multiple worker threads record command buffers for different particle groups
-
A dedicated thread submits work to the GPU
Implementation
Let’s walk through the key components needed to implement multithreading in our Vulkan application:
Thread-Safe Resource Management
First, we need to ensure our resources are accessed safely across threads. We’ll use a combination of techniques:
// Thread-safe resource manager
class ThreadSafeResourceManager {
private:
std::mutex resourceMutex;
// Resources that need thread-safe access
std::vector<vk::raii::CommandPool> commandPools;
std::vector<vk::raii::CommandBuffer> commandBuffers;
public:
// Create a command pool for each worker thread
void createThreadCommandPools(vk::raii::Device& device, uint32_t queueFamilyIndex, uint32_t threadCount) {
std::lock_guard<std::mutex> lock(resourceMutex);
commandPools.clear();
for (uint32_t i = 0; i < threadCount; i++) {
vk::CommandPoolCreateInfo poolInfo{
.flags = vk::CommandPoolCreateFlagBits::eResetCommandBuffer,
.queueFamilyIndex = queueFamilyIndex
};
commandPools.emplace_back(device, poolInfo);
}
}
// Get a command pool for a specific thread
vk::raii::CommandPool& getCommandPool(uint32_t threadIndex) {
std::lock_guard<std::mutex> lock(resourceMutex);
return commandPools[threadIndex];
}
// Allocate command buffers for each thread
void allocateCommandBuffers(vk::raii::Device& device, uint32_t threadCount, uint32_t buffersPerThread) {
std::lock_guard<std::mutex> lock(resourceMutex);
commandBuffers.clear();
for (uint32_t i = 0; i < threadCount; i++) {
vk::CommandBufferAllocateInfo allocInfo{
.commandPool = *commandPools[i],
.level = vk::CommandBufferLevel::ePrimary,
.commandBufferCount = buffersPerThread
};
auto threadBuffers = device.allocateCommandBuffers(allocInfo);
for (auto& buffer : threadBuffers) {
commandBuffers.emplace_back(std::move(buffer));
}
}
}
// Get a command buffer
vk::raii::CommandBuffer& getCommandBuffer(uint32_t index) {
std::lock_guard<std::mutex> lock(resourceMutex);
return commandBuffers[index];
}
};
Worker Thread Implementation
Next, we’ll implement worker threads that record command buffers for different particle groups:
class MultithreadedApplication {
private:
// Thread-related members
uint32_t threadCount;
std::vector<std::thread> workerThreads;
std::atomic<bool> shouldExit{false};
std::vector<std::atomic<bool>> threadWorkReady;
std::vector<std::atomic<bool>> threadWorkDone;
// Synchronization primitives
std::mutex queueSubmitMutex;
std::condition_variable workCompleteCv;
// Resource manager
ThreadSafeResourceManager resourceManager;
// Particle system data
struct ParticleGroup {
uint32_t startIndex;
uint32_t count;
};
std::vector<ParticleGroup> particleGroups;
// ... other Vulkan resources ...
public:
void initThreads() {
// Determine the number of threads to use (leave one core for the main thread)
threadCount = std::max(1u, std::thread::hardware_concurrency() - 1);
// Initialize synchronization primitives
threadWorkReady.resize(threadCount);
threadWorkDone.resize(threadCount);
for (uint32_t i = 0; i < threadCount; i++) {
threadWorkReady[i] = false;
threadWorkDone[i] = true;
}
// Create command pools for each thread
resourceManager.createThreadCommandPools(device, graphicsQueueFamilyIndex, threadCount);
// Divide particles into groups, one for each thread
const uint32_t particlesPerThread = PARTICLE_COUNT / threadCount;
particleGroups.resize(threadCount);
for (uint32_t i = 0; i < threadCount; i++) {
particleGroups[i].startIndex = i * particlesPerThread;
particleGroups[i].count = (i == threadCount - 1) ?
(PARTICLE_COUNT - i * particlesPerThread) : particlesPerThread;
}
// Start worker threads
for (uint32_t i = 0; i < threadCount; i++) {
workerThreads.emplace_back(&MultithreadedApplication::workerThreadFunc, this, i);
}
}
void workerThreadFunc(uint32_t threadIndex) {
while (!shouldExit) {
// Wait for work to be ready
if (!threadWorkReady[threadIndex]) {
std::this_thread::yield();
continue;
}
// Get the particle group for this thread
const ParticleGroup& group = particleGroups[threadIndex];
// Get the command buffer for this thread
vk::raii::CommandBuffer& cmdBuffer = resourceManager.getCommandBuffer(threadIndex);
// Record commands for this particle group
recordComputeCommandBuffer(cmdBuffer, group.startIndex, group.count);
// Mark work as done
threadWorkDone[threadIndex] = true;
threadWorkReady[threadIndex] = false;
// Notify main thread
workCompleteCv.notify_one();
}
}
void recordComputeCommandBuffer(vk::raii::CommandBuffer& cmdBuffer, uint32_t startIndex, uint32_t count) {
cmdBuffer.reset();
cmdBuffer.begin({});
// Bind compute pipeline and descriptor sets
cmdBuffer.bindPipeline(vk::PipelineBindPoint::eCompute, *computePipeline);
cmdBuffer.bindDescriptorSets(vk::PipelineBindPoint::eCompute, *computePipelineLayout, 0, {*computeDescriptorSets[currentFrame]}, {});
// Add a push constant to specify the particle range for this thread
struct PushConstants {
uint32_t startIndex;
uint32_t count;
} pushConstants{startIndex, count};
cmdBuffer.pushConstants<PushConstants>(*computePipelineLayout, vk::ShaderStageFlagBits::eCompute, 0, pushConstants);
// Dispatch compute work
uint32_t groupCount = (count + 255) / 256;
cmdBuffer.dispatch(groupCount, 1, 1);
cmdBuffer.end();
}
void signalThreadsToWork() {
// Signal all threads to start working
for (uint32_t i = 0; i < threadCount; i++) {
threadWorkDone[i] = false;
threadWorkReady[i] = true;
}
}
void waitForThreadsToComplete() {
// Wait for all threads to complete their work
std::unique_lock<std::mutex> lock(queueSubmitMutex);
workCompleteCv.wait(lock, [this]() {
for (uint32_t i = 0; i < threadCount; i++) {
if (!threadWorkDone[i]) {
return false;
}
}
return true;
});
}
void cleanup() {
// Signal threads to exit and join them
shouldExit = true;
for (auto& thread : workerThreads) {
if (thread.joinable()) {
thread.join();
}
}
// ... cleanup other resources ...
}
};
Modifying the Compute Shader
We need to modify our compute shader to work with particle ranges specified by push constants:
// In the compute shader (31_shader_compute.slang)
[[vk::push_constant]]
struct PushConstants {
uint startIndex;
uint count;
};
[[vk::binding(0, 0)]] ConstantBuffer<UniformBufferObject> ubo;
[[vk::binding(1, 0)]] RWStructuredBuffer<Particle> particlesIn;
[[vk::binding(2, 0)]] RWStructuredBuffer<Particle> particlesOut;
PushConstants pushConstants;
[numthreads(256,1,1)]
void compMain(uint3 threadId : SV_DispatchThreadID)
{
uint index = threadId.x;
// Only process particles within our assigned range
if (index >= pushConstants.count) {
return;
}
// Adjust index to start from our assigned start index
uint globalIndex = pushConstants.startIndex + index;
// Process the particle
Particle particle = particlesIn[globalIndex];
// Update particle position based on velocity and delta time
particle.position += particle.velocity * ubo.deltaTime;
// Simple boundary check with velocity inversion
if (abs(particle.position.x) > 1.0) {
particle.velocity.x *= -1.0;
}
if (abs(particle.position.y) > 1.0) {
particle.velocity.y *= -1.0;
}
// Write the updated particle to the output buffer
particlesOut[globalIndex] = particle;
}
Updating the Main Loop
Finally, we’ll update our main loop to coordinate the worker threads:
void drawFrame() {
// Wait for the previous frame to finish
while (vk::Result::eTimeout == device.waitForFences(*inFlightFences[currentFrame], vk::True, UINT64_MAX));
device.resetFences(*inFlightFences[currentFrame]);
// Acquire the next image
auto [result, imageIndex] = swapChain.acquireNextImage(UINT64_MAX, *imageAvailableSemaphores[currentFrame], nullptr);
if (result == vk::Result::eErrorOutOfDateKHR || result == vk::Result::eSuboptimalKHR || framebufferResized) {
framebufferResized = false;
recreateSwapChain();
return;
}
// Update uniform buffers
updateUniformBuffer(currentFrame);
// Signal worker threads to start recording compute command buffers
signalThreadsToWork();
// While worker threads are busy, record the graphics command buffer on the main thread
recordGraphicsCommandBuffer(imageIndex);
// Wait for all worker threads to complete
waitForThreadsToComplete();
// Collect command buffers from all threads
std::vector<vk::CommandBuffer> computeCmdBuffers;
for (uint32_t i = 0; i < threadCount; i++) {
computeCmdBuffers.push_back(*resourceManager.getCommandBuffer(i));
}
// Submit compute work
vk::SubmitInfo computeSubmitInfo{
.commandBufferCount = static_cast<uint32_t>(computeCmdBuffers.size()),
.pCommandBuffers = computeCmdBuffers.data()
};
{
std::lock_guard<std::mutex> lock(queueSubmitMutex);
computeQueue.submit(computeSubmitInfo, nullptr);
}
// Wait for compute to finish before graphics
vk::PipelineStageFlags waitStages[] = {vk::PipelineStageFlagBits::eVertexInput};
// Submit graphics work
vk::SubmitInfo graphicsSubmitInfo{
.waitSemaphoreCount = 1,
.pWaitSemaphores = &*imageAvailableSemaphores[currentFrame],
.pWaitDstStageMask = waitStages,
.commandBufferCount = 1,
.pCommandBuffers = &*graphicsCommandBuffers[currentFrame],
.signalSemaphoreCount = 1,
.pSignalSemaphores = &*renderFinishedSemaphores[currentFrame]
};
{
std::lock_guard<std::mutex> lock(queueSubmitMutex);
graphicsQueue.submit(graphicsSubmitInfo, *inFlightFences[currentFrame]);
}
// Present the image
vk::PresentInfoKHR presentInfo{
.waitSemaphoreCount = 1,
.pWaitSemaphores = &*renderFinishedSemaphores[currentFrame],
.swapchainCount = 1,
.pSwapchains = &*swapChain,
.pImageIndices = &imageIndex
};
result = presentQueue.presentKHR(presentInfo);
if (result == vk::Result::eErrorOutOfDateKHR || result == vk::Result::eSuboptimalKHR || framebufferResized) {
framebufferResized = false;
recreateSwapChain();
} else if (result != vk::Result::eSuccess) {
throw std::runtime_error("failed to present swap chain image!");
}
currentFrame = (currentFrame + 1) % MAX_FRAMES_IN_FLIGHT;
}
Advanced Multithreading Techniques
Beyond the basic implementation above, there are several advanced techniques you can use to further optimize your multithreaded Vulkan application:
Secondary Command Buffers
Secondary command buffers can be recorded in parallel and then executed by a primary command buffer:
// In worker thread:
vk::CommandBufferInheritanceInfo inheritanceInfo{
.renderPass = *renderPass,
.subpass = 0,
.framebuffer = *framebuffers[imageIndex]
};
vk::CommandBufferBeginInfo beginInfo{
.flags = vk::CommandBufferUsageFlagBits::eRenderPassContinue,
.pInheritanceInfo = &inheritanceInfo
};
secondaryCommandBuffer.begin(beginInfo);
// Record rendering commands...
secondaryCommandBuffer.end();
// In main thread:
primaryCommandBuffer.begin({});
primaryCommandBuffer.beginRenderPass(...);
primaryCommandBuffer.executeCommands(secondaryCommandBuffers);
primaryCommandBuffer.endRenderPass();
primaryCommandBuffer.end();
Thread Pool for Dynamic Work Distribution
Instead of assigning fixed work to each thread, you can use a thread pool to dynamically distribute work:
class ThreadPool {
private:
std::vector<std::thread> workers;
std::queue<std::function<void()>> tasks;
std::mutex queueMutex;
std::condition_variable condition;
bool stop;
public:
ThreadPool(size_t threads) : stop(false) {
for (size_t i = 0; i < threads; ++i) {
workers.emplace_back([this] {
while (true) {
std::function<void()> task;
{
std::unique_lock<std::mutex> lock(queueMutex);
condition.wait(lock, [this] { return stop || !tasks.empty(); });
if (stop && tasks.empty()) {
return;
}
task = std::move(tasks.front());
tasks.pop();
}
task();
}
});
}
}
template<class F>
void enqueue(F&& f) {
{
std::unique_lock<std::mutex> lock(queueMutex);
tasks.emplace(std::forward<F>(f));
}
condition.notify_one();
}
~ThreadPool() {
{
std::unique_lock<std::mutex> lock(queueMutex);
stop = true;
}
condition.notify_all();
for (std::thread& worker : workers) {
worker.join();
}
}
};
Asynchronous Resource Loading
You can use multithreading to load resources asynchronously:
std::future<TextureData> loadTextureAsync(const std::string& filename) {
return std::async(std::launch::async, [filename]() {
TextureData data;
// Load texture data from file
return data;
});
}
// Later in your code:
auto textureDataFuture = loadTextureAsync("texture.ktx");
// Do other work...
TextureData textureData = textureDataFuture.get(); // Wait for completion if needed
// Create Vulkan texture from the loaded data
Performance Considerations
When implementing multithreading in Vulkan, keep these performance considerations in mind:
-
Thread Creation Overhead: Creating threads has overhead, so create them once at startup rather than per-frame.
-
Work Granularity: Ensure each thread has enough work to justify the threading overhead.
-
False Sharing: Be aware of cache line contention when multiple threads access adjacent memory.
-
Queue Submissions: Queue submissions should be synchronized to avoid race conditions.
-
Memory Barriers: Use memory barriers correctly to ensure visibility of memory operations across threads.
-
Command Pool Per Thread: Each thread should have its own command pool to avoid synchronization overhead.
-
Measure Performance: Always measure to ensure your multithreading actually improves performance.
Debugging Multithreaded Vulkan Applications
Debugging multithreaded applications can be challenging. Here are some tips:
-
Validation Layers: Enable Vulkan validation layers to catch synchronization issues.
-
Thread Sanitizers: Use tools like ThreadSanitizer to detect data races.
-
Logging: Implement thread-safe logging to track execution flow.
-
Simplify: Start with a simpler threading model and gradually add complexity.
-
Atomic Operations: Use atomic operations for thread-safe counters and flags.
Conclusion
In this chapter, we’ve explored how to leverage multithreading with Vulkan to improve performance. We’ve implemented a multithreaded particle system where:
-
Multiple worker threads record command buffers in parallel
-
The main thread coordinates work and handles presentation
-
Proper synchronization ensures thread safety
By distributing work across multiple CPU cores, we can significantly improve performance, especially for computationally intensive applications. Vulkan’s explicit design makes it well-suited for multithreaded architectures, allowing for fine-grained control over synchronization and resource access.
As you continue to develop your Vulkan applications, consider how multithreading can help you leverage the full power of modern CPUs, and remember to always measure performance to ensure your threading model is actually beneficial for your specific use case.